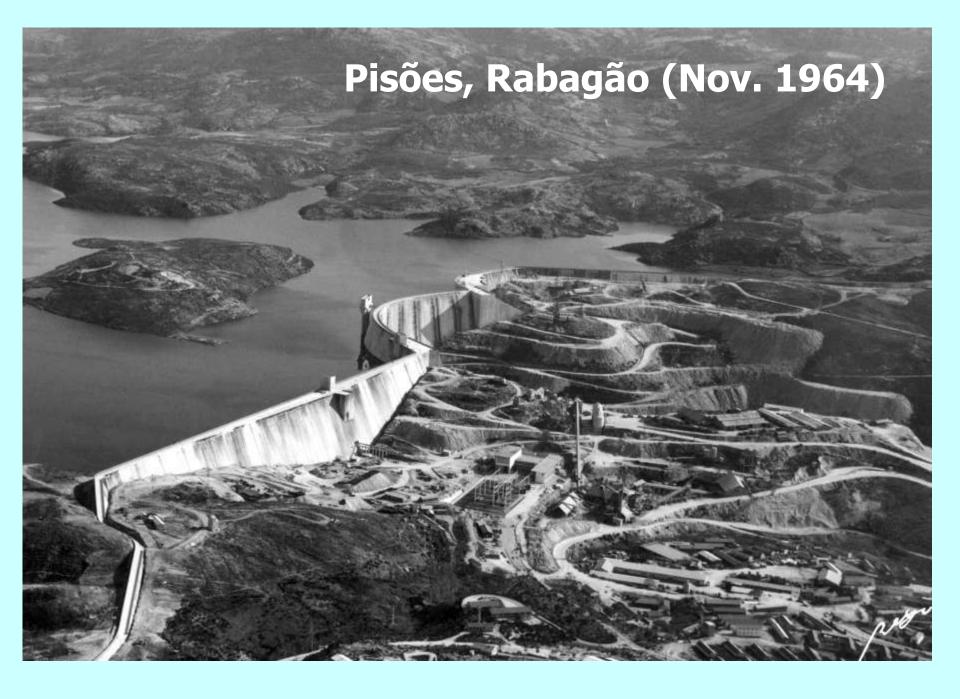
AcquaLiveExpo Um Desafio Geracional

"A Hidroenergia no Contexto Nacional"

Luís Braga da Cruz (FEUP)


Lisboa 22 de Março de 2012

Os Primeiros Aproveitamentos Hidroeléctricos em Portugal

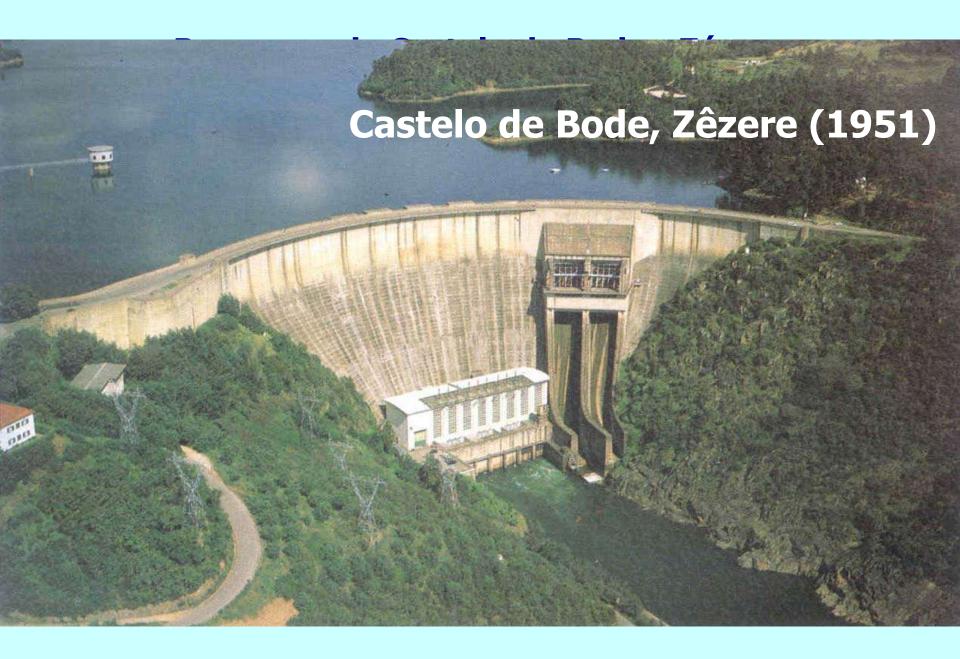
O primeiro ciclo da Hidroelectricidade

- Os primeiros aproveitamentos para abastecimento público: Penide (1891), Biel (1894), Pateiro (1899), Tomar (1901)
- 2. 1892 Primeiras regulamentação dos Serviços Hidráulicos do Ministério de Obras Públicas estimulando o sector privado
- 3. Sistema privado do Ave e afluentes
- 4. As primeiras concessões: Lindoso (1907), Serra da Estrela (1908), Ermal / Guilhofrei (1918)
- 5. 1919 Lei das Águas (Decreto 5.787-III, 10 de Maio), regime das concessões das águas de domínio público a privados: Hidroeléctrica do Alto Alentejo (1925) Ribeira de Niza
- 6. 1926 Lei dos Aproveitamentos Hidráulicos (Decr. Lei n.º 12.559) regula a produção, transporte e distribuição de energia eléctrica.
- 7. 1930 Administração Geral dos Serviços Hidráulicos e Eléctricos

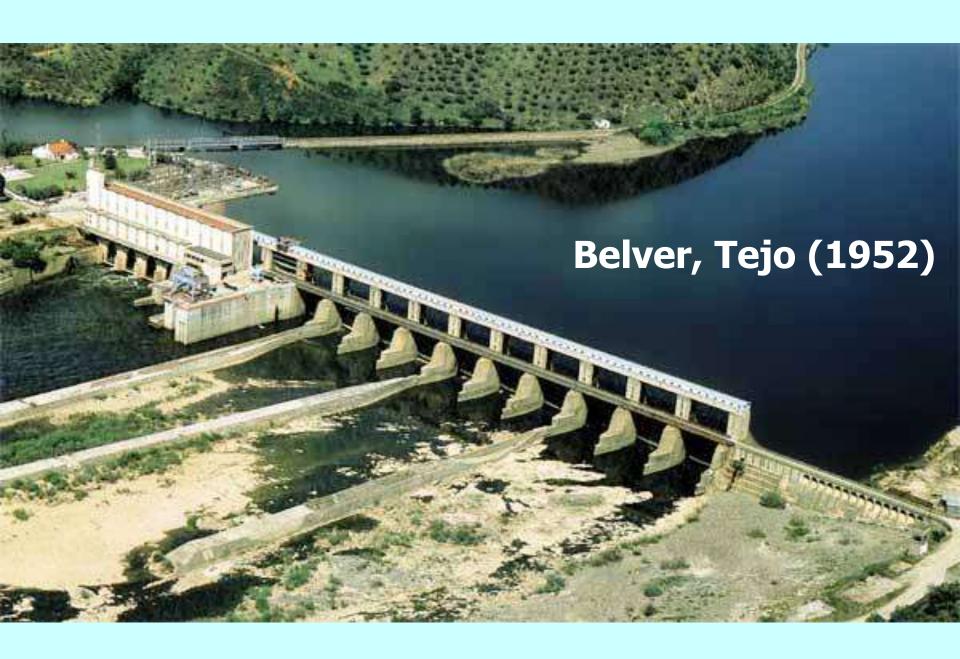
O Ciclo dos Grandes Aproveitamentos Hidroeléctricos

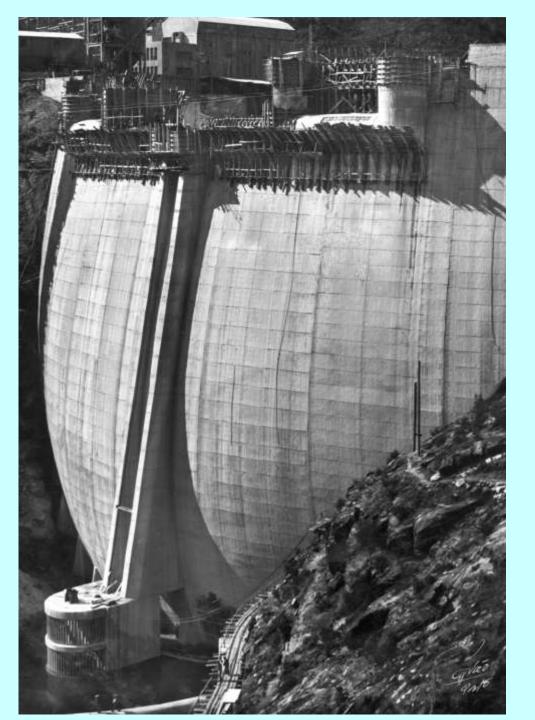
Fases da exploração do Potencial Hidroeléctrico Português - Reforma de Ferreira Dias

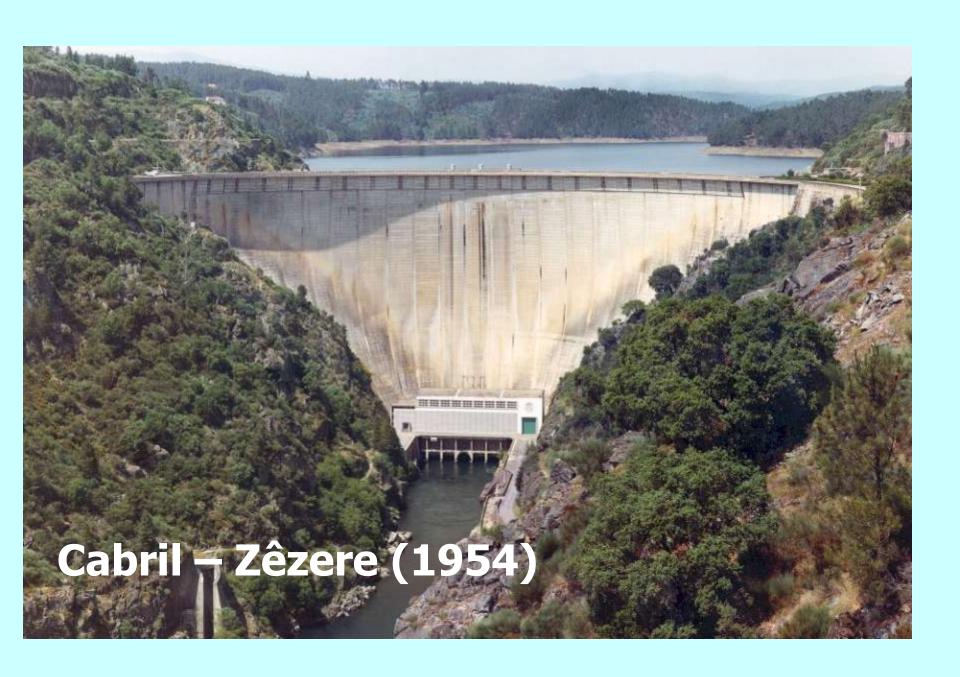
- 1944 A Lei da Electrificação (Lei 2002) e a Lei do Fomento e Reorganização Industrial (Lei 2005) uma nova concepção de desenvolvimento económico e social.
- O Estado lidera o sector eléctrico, liberta da dependência térmica, cria condições para a electrificação do País, consagra a produção eléctrica centralizada.
- **Grandes Concessões Hidroeléctricas** (1945 e depois)):
 - HICA (Hidroeléctrica do Cávado)
 - HEZ (Hidroeléctrica do Zêzere)
 - HED (Hidroeléctrica do Douro)
 - Estrutura de capital: 51% (Estado) e 49% (privado)

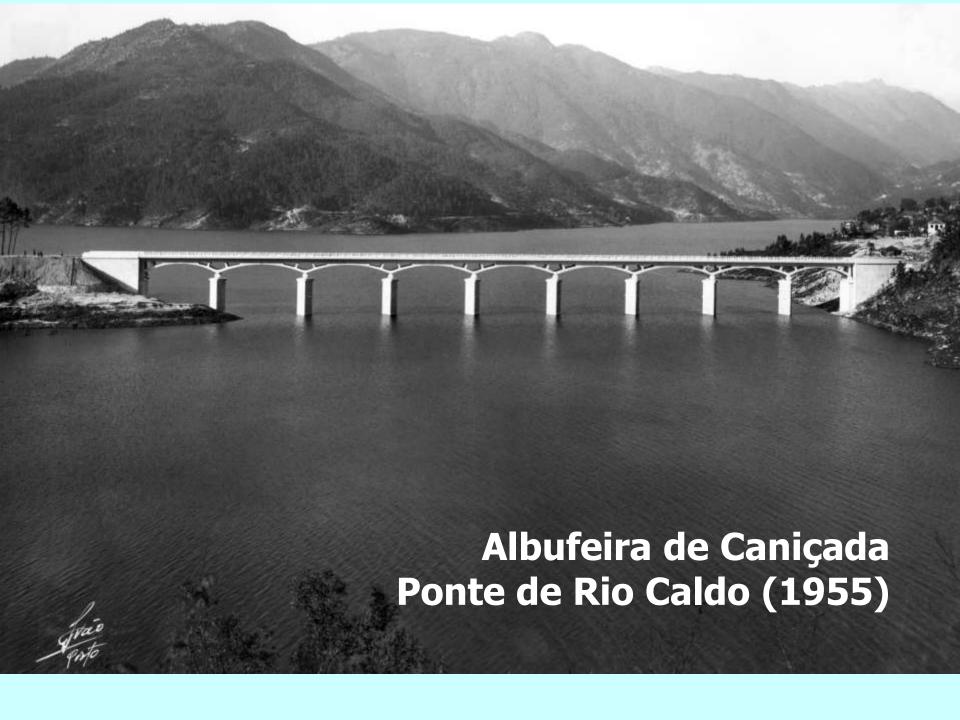


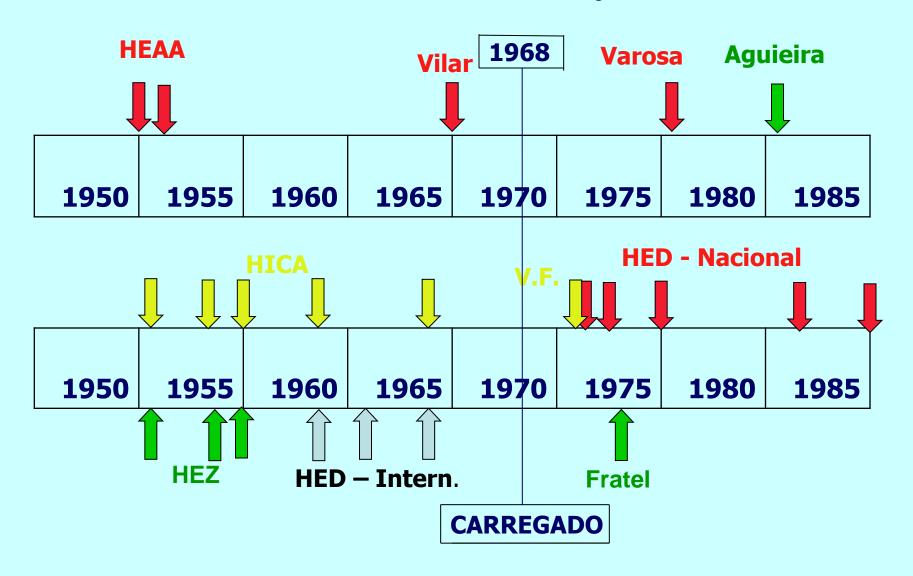
Fases da exploração do potencial Hidroeléctrico Português

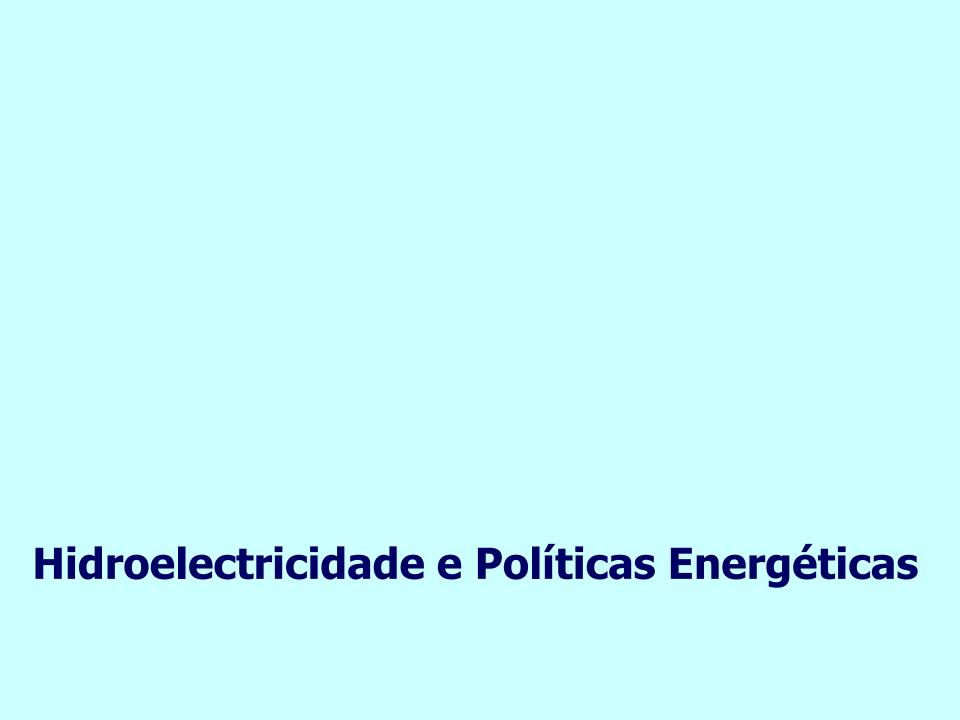

Algumas das grandes realizações desta época


- Pracana, Ocreza (1950), HEAA
- Castelo de Bode, Zêzere (1951), HEZ
- Venda Nova, Rabagão (1951), HICA
- Belver, Tejo (1952), HEAA
- Salamonde, Cávado (1953), HICA
- Cabril, Zêzere (1954), HEZ
- Bouçã, Zêzere (1955), HEZ
- Caniçada, Cávado (1955), HICA
- Paradela, Cávado (1958), HICA
- Muitas linhas da rede de Muito Alta Tensão (220kV)






Barragem de Salamonde (Março de 1953)



Grandes Aproveitamentos Hidroeléctricos (1950 – 1990) Datas de entrada em serviço

O efeito do petróleo barato na exploração do potencial Hidroeléctrico Português -

- O calendário das entradas em serviço revela alguma descontinuidade em todas as grandes empresas e em especial entre o final da década de 50 e o início dos anos 80.
- Pelo efeito do <u>efémero período do petróleo barato</u>, as centrais térmicas iniciam o seu percurso e atrasam o programa hidroeléctrico:
 - Fuel: Carregado (1968), Setúbal (1979)
 - Carvão: Sines (1985), Pego (1993)
 - Gás Natural: Tapada do Outeiro (1998), Ribatejo (2004)
- Assim se justifica que Portugal tenha aproveitado menos de 50% do seu potencial hidroeléctrico
- 1997 Quioto faz despertar para a redução das emissões de CO2, para as energias endógenas e para a eficiência energética.

Os objectivos de qualquer política energética

São sempre:

- A segurança do abastecimento,
- A redução da dependência exterior, por recurso ao potencial endógeno e às energias renováveis,
- A conservação energética e o uso racional da energia

Mas também:

- A liberalização dos mercados
- Maior concorrência entre os agentes
- Dissociação de actividades
- Reforço da regulação independente

Tem havido constância nas Políticas Energéticas

Eficiência Energética e Energias Endógenas

Resolução do Conselho de Histotros n.º 154/2001 de 37 de Setembro

PROGRAMA

- > introdução
- > Estratógia
- > Medidas

Enquadramento geral

Elidéncia energética

Energias endógeras

Outras > Diplomas

Pacote de diplomas aprovados

racote de apromas aprovado: e em preparação no âmbito

do Programa E4

>Energia Portugal 2001

O que dizia o E4 Eficiência Energética e Energias Endógenas (RCM N.º 154/2001 27.Setembro. 2001)

Perante a perspectiva de a potência eléctrica disponível poder vir a atingir os 15.000 MW, tudo indica que seja possível dispor em 2010 de cerca de 50% daquela potência com origem nas energias renováveis. Porém, uma tal perspectiva do lado da oferta energética ou, mais precisa e correctamente, do lado da oferta de electricidade, está longe de esgotar o problema da energia em Portugal já que a electricidade, para além dos méritos qualitativos e valores intrínsecos que se lhe reconhecem, representará, tipicamente, 1/5 a 1/4 da energia final disponível.

O E4 representou um ponto de inflexão nas Energias Renováveis em Portugal.

O Sistema energético nacional caracterizava-se por:

- Uma forte dependência externa
- Elevada intensidade energética do PIB
- O nível de emissões reflectia ineficiência e revelava a dominância dos combustíveis fósseis no mix energético nacional

Face aos recursos endógenos nacionais seria possível:

- Duplicar a potência eléctrica instalada por via renovável
- Satisfazer os objectivos de 39% de energia eléctrica de origem renovável num horizonte de 10 a 15 anos (Directiva daER);
- Satisfazer parte das necessidades de água quente doméstica e industrial por recurso à energia solar térmica;
- Atenuar as necessidades de energia para o conforto ambiente, pela promoção de tecnologias solares passivas de climatização e outras vias de arquitectura bioclimática.
- Desenvolver em paralelo a Utilização Racional de Energia

As Contas que então fizemos...

Consumo em 2010 (previsão REN)* 61 500 GWh 39 % do consumo (compromisso) 23 996 GWh

Grande Hídrica 12 105 GWh

FER 12 305 GWh

Total Estimado

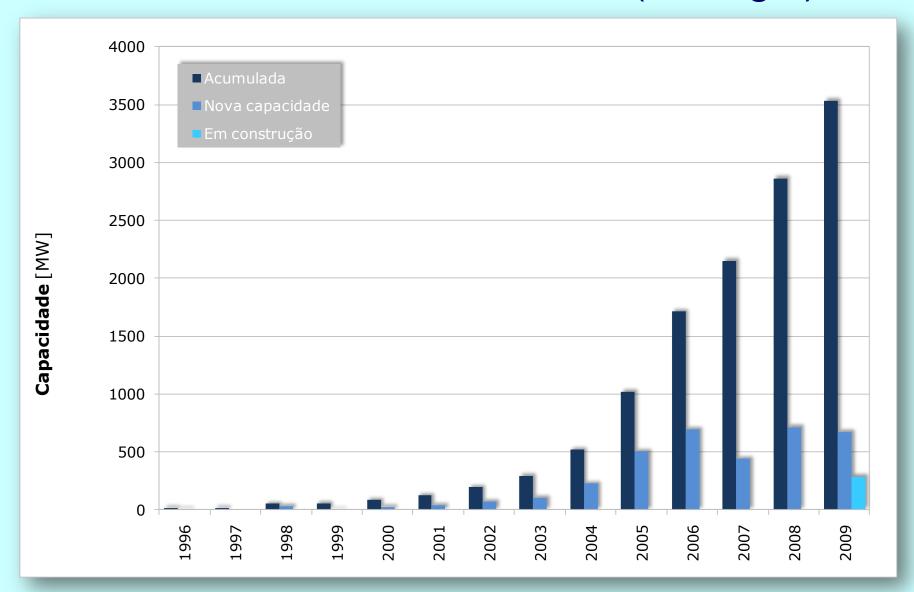
24 410 GWh

^{*} Em 2011, o consumo total foi de 50.503 GWh (82%)

DIRECTIVA COMUNITÁRIA DAS ENERGIAS RENOVÁVEIS PRODUÇÃO EM REGIME ESPECIAL (PRE)

	i otoriola (ilitt)									
	Previsão a 2003	ıté	Previsível até 2010		Total em 2010					
Eólica	300	+	3 450	=	3 750					
PCH ¹	250	+	150	=	400					
Biomassa	19	+	181	=	200					
RSU	71	+	59	=	130					
Outras*		+	200*	=	200					
Total	560	+	3 790	=	4 680					

Potência (MW)


12 305

¹ Pequena Central Hidroeléctrica (< 10 MW)

^{*} Estimativa agregada para fotovoltáica e ondas

Em 1995, havia em Portugal s Parques Eólicos com uma potência total instalada de apenas 8,5 MW. Em Dezembro de 2011, a potência ligada atingia os 4.373 MW e, em fase de construção, mais 21 MW!

Potência Eólica Acumulada (Portugal)

Fonte - INEGI

A Política Comum de Energia e a Produção Renovável

Estratégia Nacional para a Energia

• A Estratégia Nacional para a Energia foi sendo sucessivamente apurada:

- Na RCM n.º 63/2003, actualizada pela RCM n.º 169/2005,
- RCM n.º 50/2007,
- RCM n.º 29/2010, aprova a Estratégia Nacional para a Energia (ENE 2020), que considera novas metas para Portugal.

Em 2010, Portugal submeteu à Comissão:

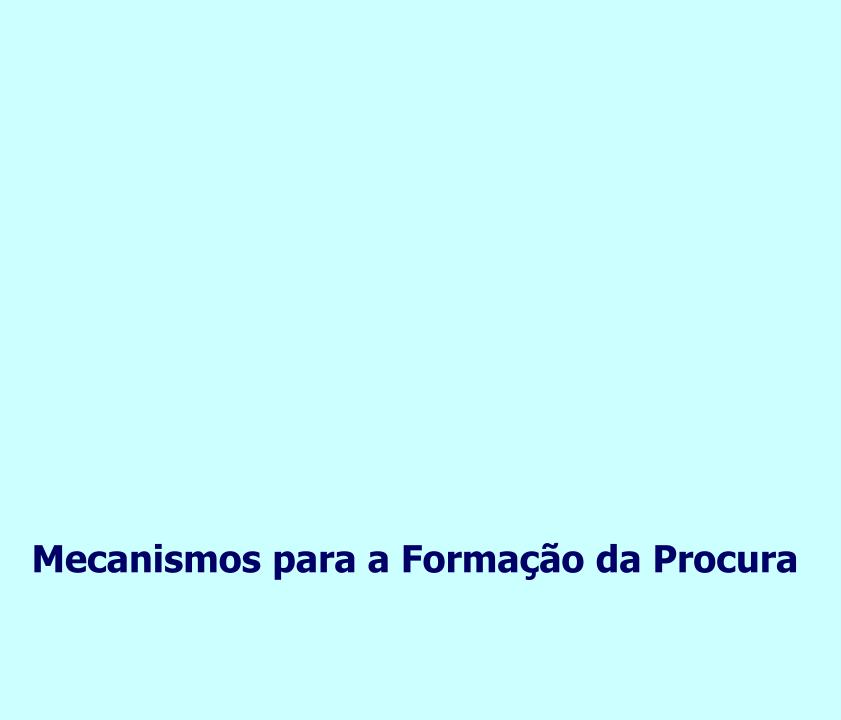
- O <u>Plano de Acção Nacional para as Energias Renováveis</u> ao abrigo da Directiva 2009/28/CE com as as medidas para atingir o objectivo definido na directiva.
- No sector da eficiência energética o <u>Plano Nacional de Acção da</u> <u>Eficiência Energética (PNAEE)</u> definido na Resolução do Conselho de Ministros n.º 80/2008

A Directiva 2009/28/CE e o PNAER

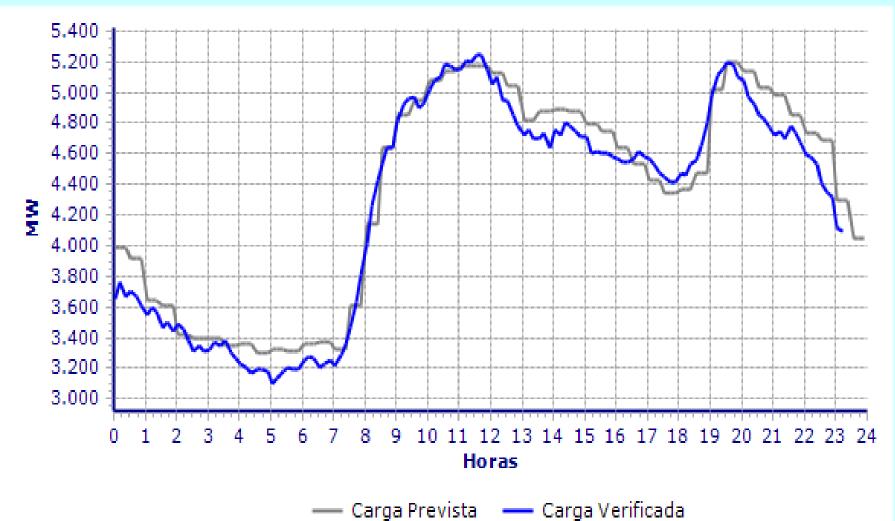
- <u>Directiva 2009/28/CE, de 23 de Abril de 2009</u>, para a <u>promoção da utilização de energia proveniente de fontes renováveis</u> (Directiva FER),
- Todos os Estados-Membros deveriam apresentar à CE um <u>Plano</u> <u>Nacional de Acção para as Energias Renováveis</u> até 30 de Junho de 2010, obedecendo a um modelo estabelecido e responder a um inquérito uniforme feito a todos os EM.
- O PNAER fixa os objectivos de Portugal relativos à <u>quota de energia</u> <u>proveniente de fontes renováveis consumida</u>, em 2020, <u>e</u> às <u>medidas e acções previstas para cada um dos sectores:</u>
 - Transportes,
 - Electricidade,
 - Aquecimento e Arrefecimento (A&A)

Principais Objectivos da ENE 2020 (FER)

- Compromissos nacionais para 2020, com origem em FER:
 - 31% do consumo final bruto de energia,
 - 60% da electricidade produzida,
 - 10% do consumo de energia no transporte rodoviário.
- Reduzir dependência do exterior, para 74%
- Reduzir em 25% o saldo importador energético (economia de 2.000 M€/ano - 60 M barris petróleo)
- Cluster industrial eólico e outras FER (3.800 M€ de VAB, 100.000 postos de trabalho)
- Cumprir os compromissos de redução de emissões

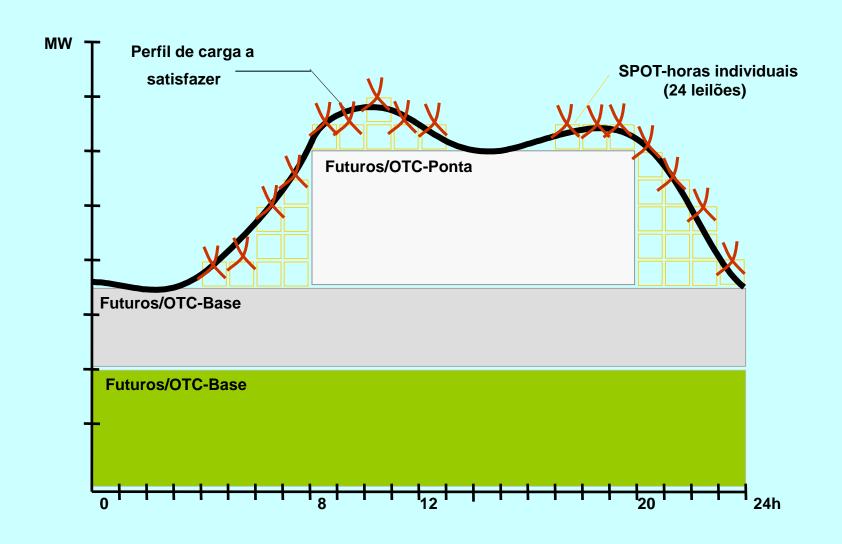

O Potencial Hidroeléctrico

- O recurso Hidroeléctrico por utilizar é instrumental para a política energética nacional, sobretudo pela disponibilidade de potência
- A intermitência e a imprevisibilidade da energia eólica, condicionam o seu despacho, podem ser mitigadas pela reversibilidade dos sistemas hidroeléctricos e dos seus reforços de potência.
- O Plano Nacional das Grandes Barragens Uma resposta
- 17 Novos empreendimentos; 4.368 novos MW de Potência Hídrica (2.861 MW reversíveis)
- Conclusão: Este novo ciclo representa uma oportunidade. Há um património técnico e de conhecimento em Portugal no domínio dos Grandes Aproveitamento Hidroeléctricos, que importa preservar e aprofundar.


Hidroelectricidade – Cronograma até 2020

Novos centros produtores hídricos	Tipo	Potência liq. (MW)	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020
Picote II	Não reversível	246											
Bemposta II	Não reversível	191											
Alqueva II	Reversível	256											
Pedrógão	Não reversível	14											
Ribeiradio/Ermida	Não reversível	74											
Baixo Sabor	Reversível	171											
Foz-Tua	Reversível	255											
Venda Nova III (Frades)	Reversível	736											
Salamonde II	Reversível	204											
Alvito	Reversível	225											
Fridão	Não reversível	238											
Girabolhos	Reversível	355											
Gouvães	Reversível	660											
Alto Tâmega (Vidago)	Não reversível	127											
Daivões	Não reversível	118											
Paradela II	Reversível	318											
Cabril II	Reversivel	86											

Fonte: PNAER

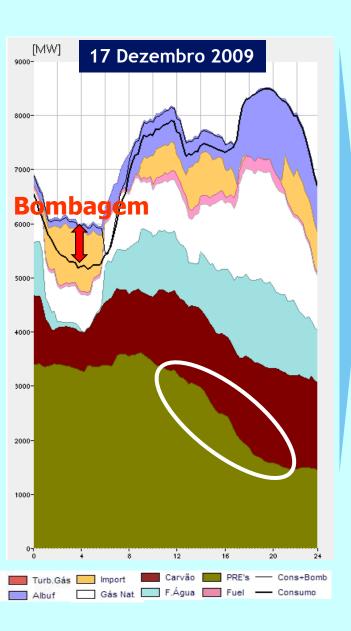

Diagrama de Carga da RNT (16.Março.2012)

Digrama de carga de Inverno (2005)

Consumo Diário e formas de Contratação

Sobreposição de Produtos para Composição Do Diagrama Físico

O diagrama de Produção/Consumo é constituído com a sobreposição da contratação efectuada nos diversos mercados (organizados ou bilaterais) **Produtos** Mercado **Compra** de Ajustes **Venda** Ponta Base Base Base **Dia anterior** Longo/Medio Prazo Tempo real Tempo até à entrega física Prazos Dias / horas Anos / meses Tempo real


A Relação Específica da Hidroelectricidade com a gestão da energia

Hidroelectricidade – Um desafio para o Operador de Sistema

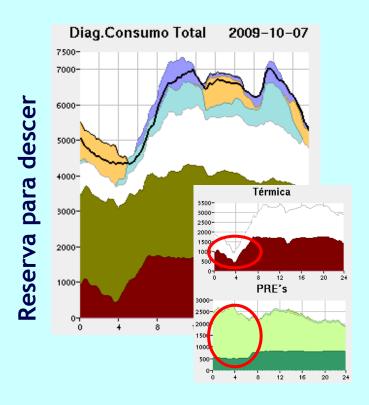
- Aumenta a margem de manobra do TSO Operador do Sistema na gestão diária do diagrama de cargas, o que tem impacto nos preços e nas trocas do MIBEL.
- A bombagem hidroeléctrica não é útil apenas para valorizar os excedentes eólicos. A bombagem reforça a flexibilidade do TSO
- A Hidroelectricidade atenua as anomalias pontuais do sistema:
 - Compensa a quebra da produção eólica por ausência de vento.
 - Compensa a saída intempestiva de um grupo térmico de base, por ser a tecnologia de resposta mais rápida.
 - Mantém em níveis aceitáveis o recurso à reserva operacional térmica.
- A bombagem em períodos de vazio aumenta a capacidade de turbinamento em horas cheias e pode reforçar a exportação.

Energia renovável: desafio para o operador

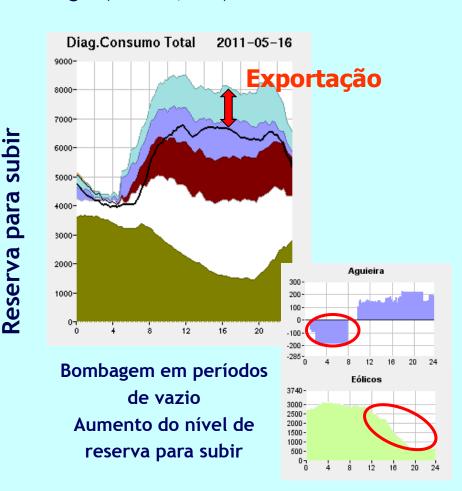
Decréscimo em 8 horas

de mais de 80% da

potência eólica colocada

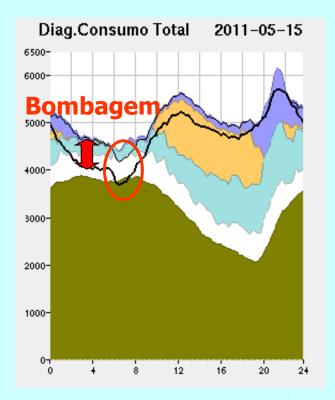


Compensação com outras tecnologias de resposta rápida (hídrica)



DESAFIOS PARA O TSO - INTERMITÊNCIA

- Mais flexibilidade de operação do sistema produtor para fazer face ao crescente peso da produção intermitente: RESERVA OPERACIONAL
- Mais capacidade de ARMAZENAMENTO de energia (hídrica,)


Elevada capacidade renovável no vazio Problemas ao nível da reserva para descer

DESAFIOS PARA O TSO - Renovável em excesso

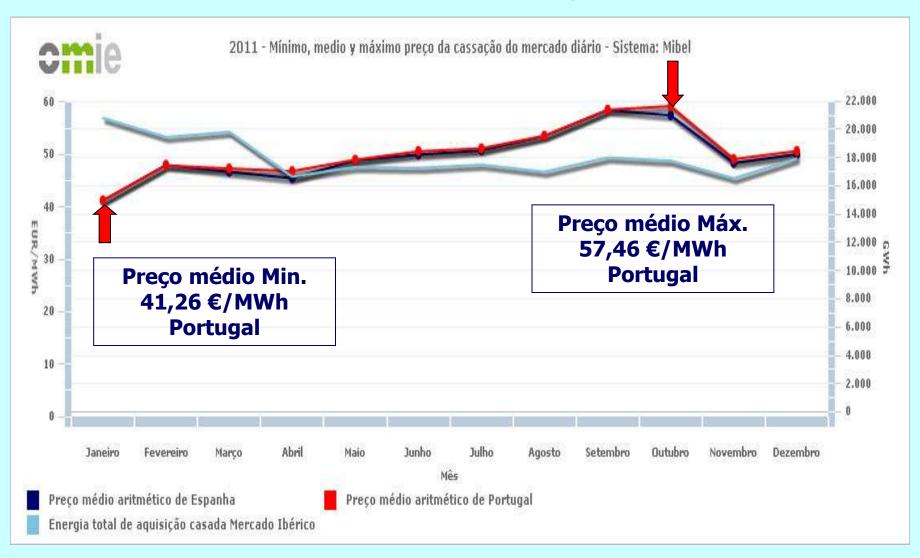
15 Maio 2011 - Produção em regime especial superior ao consumo

(entre as 6h15 e as 7h15)

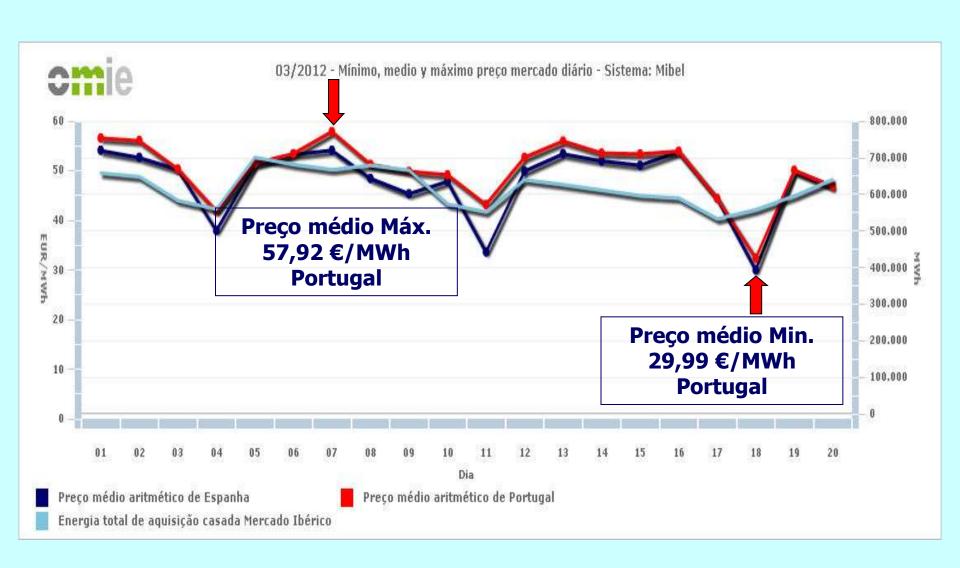
Às 7h45 produção total nacional excedia o consumo em:

+ 704 MW 205 MW- exportação

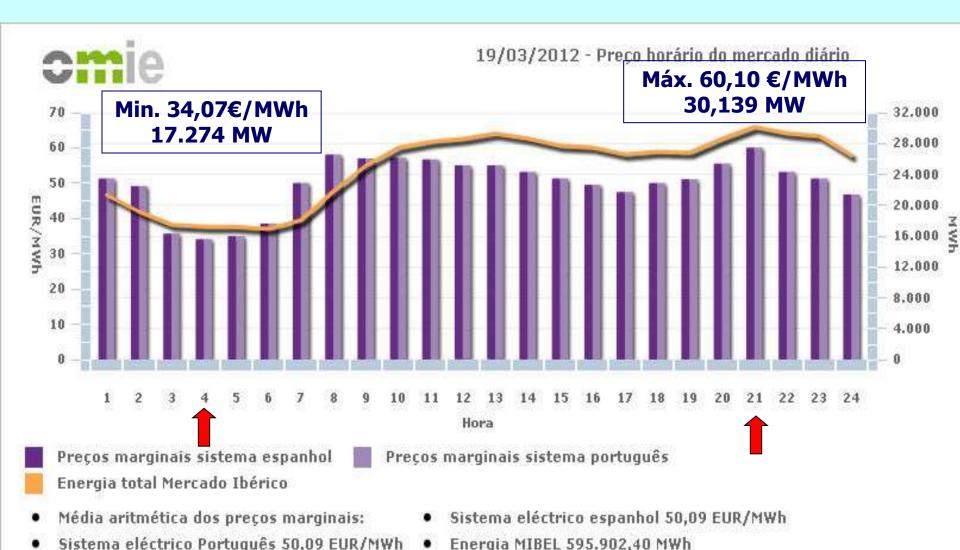
479 MW - consumo em bombagem


71% do consumo abastecido por produção renovável

Por razões de segurança do sistema - necessidade de manutenção de quantidade mínima de PRO na rede


Relação Energia - Potência

- Para satisfazer consumos, não precisamos apenas de energia mas de potência
- O consumo é variável ao longo das horas do dia e dos dias da semana e do ano.
- O preço spot de energia eléctrica é variável
- As diferenças entre horas vazias e cheias são normalmente de 1:2
- Mas podem ser muitíssimo mais elevadas
- A Hidroelectricidade é a tecnologia que melhor responde às flutuações da procura


Preços médios mensais do mercado diário MIBEL, para Portugal (ano de 2011)

Preços médios diários do mercado MIBEL, para Portugal (mês de Março de 2012)

Preços spot mercado diário MIBEL para Portugal (dia 19 e Março de 2012)

Conclusão

A Hidroelectricidade deve ser vista em diferentes perspectivas:

- de gestão nacional de recursos nacionais,
- Económica,
- Energética.
- 1. Aumentar a dotação de água em quantidade e qualidade é de um enorme benefício social.
- 2. Em termos económicos, é das tecnologias com maior incorporação nacional e com impactos indirectos mais sensíveis.
- 3. Sob o ponto de vista energético deve considerar-se: o seu carácter renovável, o valor da energia e da potência, contributo para a gestão flexível de sistema.
- 4. As novas albufeiras e os reforços de potência vão contribuir para a racionalização dos escalões já instalados.